

SWD Damage in Caneberries and Cherries

• Fruits become susceptible to SWD damage as soon as fruit color begin to change,

Blueberry: green to purple Cherry: green to pink/red

- Females lay eggs inside the fruit, and larvae feed on it internally
- The larvae pupate inside, partially inside, or completely outside of the fruit
- Infestation can lead to secondary pest/disease invasion

Photo: E. Burkness, D. Haviland; C. Teasdale, M. Hauser, UCIPM

4

	Insectici	dal Con	trol (202	21)	
SN	Treatments	Rate/A	Adult SWD mortality (%)(Mean±SE) in 1-day field-weatheredinsecticide residue on cherry fruitsafter exposure in the lab for24 h48 h72 h		
1	Exirel (Cyantraniliprole)	16 fl.oz	8±3.3 a	<mark>40 ± 10.1 bc</mark>	<mark>88 ± 5.2 b</mark>
2	Movento (Spirotetramat)	9 fl. oz	0±0a	2 ± 1.7 a	4 ± 3.5 a
3	Pyganic 1.4 EC (pyrethrin)	2 qt.	4 ± 2.1 a	8±3.3 a	16 ± 6.0 a
<mark>4</mark>	Verdepryn (Cyclaniliprole)	11 fl. oz	8±3.3 a	22 ± 7.6 ab	<mark>34 ± 9.2 a</mark>
<mark>5</mark>	Warrior II (lambda-cy)	2.56 fl. oz	24 ± 3.5 b	54 ± 7.2 c	<mark>76 ± 8.7 b</mark>
6	Control		0+0a	0 ± 0.3	4+21a

- In caneberry production area in California's Central Coast, SWD has built resistance to spinosad and some pyrethroids (Gress and Zalom 2018, Ganjisaffar et al. 2022a, Ganjisaffar et al., 2022b).
- Spinosad (Entrust): Wild SWD from treated fields exhibited spinosad LC50 values 4.3–7.7 times higher than those from the untreated location (Gress and Zalom 2018)
- Spinosad: Extensive field studies (2017-19) showed widespread resistance with RR based on the LC50 values were as high as 10.7-, 13.2-, and 16.9-fold in 2018, 2019, and 2020, respectively (Ganjisaffar et al. 2022b)

Pyrethroid resistance (bifenthrin, Type I; zeta-cypermethrin, Type II)

- In 2019, flies collected from caneberry fields in Monterey county, the RR50s ranged from 7.5- to 8.7-fold for both pyrethroids (Ganjisaffar et al. 2022a)
- In 2020, The RR50 values varied from 19.0- to 36.1-fold for zetacypermethrin (Mustang Max) and from 15.9- to 47.7-fold for bifenthrin (Brigade) (Ganjisaffar et al. 2022a)
- These studies are the first reports of field-derived pyrethroid resistance in SWD from two major California berry production areas (Central Coast, San Luis Obispo areas)

RR (Resistance Ratio) = LC50 for resistant insects divided by the LC50 for susceptible insects.

2022 Study R	lesults (I	Prelimina	iry)			
First few attempts failed due to v Finally, we were able to produce	very high control	mortality				
Table: Insecticide suscentibility o	f cherry orchard	collected SW/D no	nulations to			
three commonly used insecticide active ingredients						
		Zeta-				
	Malathion	Cypermethrin	Spinosad			
Avg. % test mortality (MT)	89.2	97.5	92.5			
Avg. % control (MC)	0.0	1.4	6.3			
% Corrected mortality						
		07.4	02.0			

Plan for 2023: More comprehensive study
Continue testing field collected flies and compare with the susceptible (lab) populations
Collect live flies from 3-5 orchards representing the Valley, and test for potential tolerant to three insecticides – spinosad, zeta-cypermethrin, and malathion,
Depending on the availability of the discriminating dose, it might be a good idea to test a few more active ingredients, such as bifenthrin, cyantraniliprole (e.g., Exirel)

