IMPROVED MANAGEMENT OF BACTERIAL BLAST AND BACTERIAL CANKER OF SWEET CHERRY

<u>Florent Trouillas</u> UC Davis Plant Pathology Kearney Agricultural Research and Extension

Project Cooperators:

Dr. Jim Adaskaveg, UC Riverside Dr. Tawanda Maguvu, UC KARE Rosa Jaime Frias, UC KARE Dr. Mohammad Yaghmour, UCCE Kern County

BACTERIAL CANKER: symptoms

BACTERIAL CANKER: symptoms

BLOSSOM BLAST: symptoms

Many localized and sometime widespread events of blast in 2018, <u>2019</u>, 2020, 2021, and <u>2023</u>
Royal Hazel, Royal Lynn and Coral cvs.

BLOSSOM BLAST: symptoms

Can be extremely severe

ICE NUCLEATION ACTIVITY:

> P. syringae pv. syringae can trigger ice crystal formation at temperatures where water would normally remain liquid

Statement of problem - Rationale

□ The disease is very active in California, the pathogen *Pseudomonas syringae* is ubiquitous in cherry orchards

G Few studies in sweet cherry in California

- Little, E.L., Bostock, R.M. and Kirkpatrick, B.C., 1998. Genetic characterization of *Pseudomonas syringae pv. syringae* strains from stone fruits in California. *Applied and Environmental Microbiology*, 64(10), pp.3818-3823. 4 strains from cherry
- WILSON, E.E., 1931. A comparison of Pseudomonas prunicola with a canker-producing bacterium of stone-fruit trees in California. Phytopathology, 21(12).

□ Two distinct phases: bacterial blast and bacterial canker

A complex disease, little knowledge about the disease biology and epidemiology

- Historically, Pseudomonas syringae pv. syringae (Pss), and P. syringae pv. morsprunorum (Psm) races 1 and 2 have been reported from California sweet cherry
 - The different pathovars and races of *P. syringae* isolates from cherry have been distinguished and characterized by physiological and biochemical tests
 - Information is outdated
 - The *Pseudomonas syringae* phylogenetic group comprises 15 recognized bacterial species closely related to *P. syringae* and more than 60 pathovars, many are from Prunus sp.

□ New findings from our almond research – 7 distinct groups of pseudomonads associated with almond, 3 pathogens.

Objectives: 3-year project (2/3)

1- to characterize *Pseudomonas* isolates from cherry using whole genome sequencing (Year 1)

2- to investigate the pathogenicity of *Pseudomonas* species and *P. syringae* pathovars from cherry and recognize the main pathogen groups (Year 1)

3- to determine **baseline sensitivities** for kasugamycin and oxytetracycline of all pathogenic *Pseudomonas* spp. and *P. syringae* pathovars affecting cherry in California, and to determine the frequency of copper resistance within *P. syringae* populations (**Dr. Jim Adaskaveg Year 1 & 2**)

4- to develop and validate a real-time PCR assay for the **specific detection** and **quantification** of *P. syringae* cherry-adapted pathogenic strains or pathovars (Year 1 & 2)

5- Gain knowledge of disease epidemiology (main inoculum sources and population dynamic (Year 2 & 3)

6- to develop disease-risk prediction tool (Year 2 & 3)

7- to develop guidelines to industry stakeholders to improve management of bacterial blast and canker of sweet cherry in California (Year 3): develop risk prediction model, optimize timing of bactericide applications

Objective 1: characterize Pseudomonas isolates from cherry using whole genome sequencing

More than 300 isolates of Pseudomonas were collected from symptomatic and asymptomatic cherry tissues

Morphology: isolation on King's B medium and fluorescence

Pseudomonas syringae species complex:

- > P. syringae species complex comprises of commensals, opportunistic, and specialized phytopathogens
- > 6 genomospecies within the *P. syringae* species complex were identified from symptomatic and asymptomatic cherry tissue
- > At least 4 putative plant pathogens identified based on genome prediction analysis

	atros	NCENICISPION PROBABLE	eeuston whether the start	ontoniosminetic	enes inbomine	eoreoininiosurreiteenes
nylogenomic Species	Ŷ	~	5	5	ব	
syringae pv. syringae	100%	100%	100%	100%	0%	
Genomospecies A	100%	100%	0%	0%	0%	
P. syringae	100%	100%	100%	100%	0%	
P. cerasi	100%	100%	100%	100%	16.70%	
P. viridiflava	0%	50%	0%	0%	0%	
Genomospecies C	0%	0%	0%	0%	0%	

Objective 2: Identify the main pathogenic *Pseudomonas* species in sweet cherry

Canker Pathogenicity studies in the field:

Pathogenicity studies for blossom blast:

Coral cultivar, highly susceptible

Pathogenicity studies: Cherry field assays

Leaf spots caused by pathogenic pseudomonads

Pathogenicity studies:

Cherry canker field assays November 2023

Objective 3: Improve disease management, including resistance management

Testing for antibiotic resistance:

GENE PREDICTION

using genome sequence data to predict drug resistance

Filename		Date (UTC)		RGI Criteria	# Perfe	et Hits # Strict Hit	Loose Hits	Download
PS3508FAulo A	ssenibły	October 27, 2022 19 (10,58	Perfact, Strict, complete g	ands only a	ç e	à	Uperford
				Search:				
RGI - Criteria	ARD Term	SNP	Detection Criteria	AMR Gene Family	Drug Class	Resistance Mechanism	% Identity of Matching Region	% Length of Reference Sequence
Strict	abadubarisA CedArmanuad		piotan tumokog undel	major facilitator superformity (MFS) emitticlic efflux pump	fluorocu noione antibiotic	ant biotic efflux	72.75	100.58
Stact	etef		proteen feoriologi model	resistance noculation cell chassion (RND) emittecto office pump	Russueurintenie antibiolis, terracycline antibiotic	weitheolae willias	42.22	98.58
Sinci	satur		proter temolog model	resinitance- noculation cell cheaton (RND) amitiscie: afflux pump	fuorecurrerens antibiolit; terracycline antibiotic	ant facilie: all us	58.25	100.38
Stric)	atof		profuer: homolog mödel	nsiittanso- nodulation-cell chreach (RMD) entitiette effus pump	Ausroquinatione antibiolis; tetracycline antibiolis	artitizii: sillux	42 45	90.94
Shid	APH(3°)-b		protein femolog model	APH(1 ⁻)	armoglycoside artholic	antificate: in activation	19 BS	100.00
1000	50400-14		protein homolog	ATTAINT	Long a contra transmit	and blocks for all solutions	20.04	100.00

BASELINE SENSITIVTY STUDIES

Invitro antibiotic sensitivity assays

copper equivalent

copper equivalent

Testing for antibiotic resistance:

46% (16/35) of *P. syringae* pv. *syringae* isolates tested had the ctpV gene which is known to confer resistance to copper
None of the 60 isolates from the *P. syringae* species complex had a gene or mutation that conferred resistance to kasugamycin

Objective 4: Improve pathogen detection and disease diagnostic

Improved diagnostic and pathogen ID:

Test and design primer sets for diagnosis

Table 1. Primers	to be used for detection of specific species or group		
Primer Name	Primer Set	Target	Reference
	G1_m16F: 5'-CCGYTGATCTTCGTCGATCT-3'		
Gl	G1_R: 5'-CGGTAATGCTGTCGCCAAAA-3'	Pathogenic pseudomonads	Visnovsky et al., 2020
	PsAVRE_F: 5'-GACTGGTAGGTCTGAACGCC-3'	Pseudomonas svringae nv	
PSAVRE	PsAVRE_R 5'-TGCTGCTCAGCGTGTAAAGA-3'	syringae	This study
	PcAVRE_F: 5'-GGACTACTGGCCTGGCTTTT-3'		
PcAVRE	PcAVRE_R: 5'-CGCGCTTCATAGGTTTCGTG-3'	Pseudomonas cerasi	This study
	PvhrpR_F: 5'-CATATCCTCAACCGGCTGCF3'		
PvhrpR	PvhrpR_R: 5'-GCCGTGGAATACCCAGTTCA-3'	Pseudomonas viridiflava	This study

Develop and validate a realtime PCR assay for the **specific detection** and **quantification** of P. syringae cherry-adapted pathogenic strains or pathovars.

1:

Diseased samples

2:

3:

Objective 5: Investigate the disease epidemiology

DISEASE EPIDEMIOLOGY:

Cankers as inoculum sourcesEpiphytic population on buds

Develop a disease risk prediction tool :

1- Culture-dependent, bud monitoring (BudMon) technique:

Flower buds sampled during late winter

□ Frequency of infected buds out of 100 sampled buds

Develop a disease risk prediction tool :

2- Culture-independent, using real time q-PCR

- **G** Flower buds sampled during late winter
- **Determine population levels in buds and a threshold for disease occurrence**

. .

5.5

Thank you!

Questions?